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Condition for alternans and its control in a two-dimensional mapping model
of paced cardiac dynamics
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We investigate a two-dimensional mapping model of a paced, isolated cardiac cell that relates the duration
of the action potential to the two preceding diastolic intervals as well as the preceding action potential duration.
The model displays rate-dependent restitution and hence memory. We derive a criterion for the stability of the
1:1 response pattern displayed by the model. This criterion can be written in terms of experimentally measured
quantities—the slopes of restitution curves obtained via different pacing protocols. In addition, we analyze the
two-dimensional mapping model in the presence of closed-loop feedback control. The control is initiated by
making small adjustments to the pacing interval in order to suppress alternans and stabilize the 1:1 pattern. We
find that the domain of control does not depend on the functional form of the map, and, in the general case, is
characterized by a combination of the slopes. We show that the gaing necessary to establish control may vary
significantly depending on the value of the slope of the so-called standard restitution curve~herein denoted as
S12), but that the productgS12 stays approximately in the same range.
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I. INTRODUCTION

Several experimental and modeling studies have s
gested that an abnormal cardiac rhythm known as altern
of the action potential duration~APD! is a first stage in the
development of ventricular arrhythmias@1–5#, which often
lead to sudden cardiac death. APD alternans is characte
by short-long alternations of the duration of subsequent
tion potentials and often can be induced by pacing card
tissue at a rapid rate.

A well-known mechanism for producing alternans is ste
APD restitution, as was first shown theoretically by Nolas
and Dahlen@6#. Guevaraet al. @7# formularized this concep
by modeling the response of cardiac tissue to pacing u
the one-dimensional map

An115 f ~Dn!. ~1!

Here, f is the restitution curve~RC!, An11 is the APD gen-
erated by the (n11)th stimulus andDn is thenth diastolic
interval ~DI!, i.e., the interval during which the tissue reco
ers to its resting state after the end of the previous (nth)
action potential. Under pacing at a fixed cycle length,
APD and DI are related through the pacing relation

An1Dn5B, ~2!

whereB is the pacing interval. It was shown in Ref.@7# that
alternans originates via a period-doubling bifurcation and
pears whenever the modulus of the slope of the RC is gre
than one,

u f 8u>1. ~3!

The model~1! describing APD as a function of only th
preceding DI contradicts many experiments@8–10# which
1063-651X/2004/69~3!/031904~8!/$22.50 69 0319
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show that the RC depends on the method by which it
measured. Moreover, recent studies@11–15# have shown that
the slope of the RC at the onset of alternans can be sig
cantly larger than unity and thus the criterion~3! fails to
predict the onset of alternans in some cases.

Based on empirical data, Gilmour and Collaborato
@16,17# proposed a different type of mapping model to d
scribe their experiments~later, a model of this form was
derived analytically@18# from a three-ionic-current mem
brane model@19#!. They assumed that the APD depends n
only on the preceding DI, but also on the preceding APD,
that

An115F~An ,Dn!. ~4!

The mapping model~4! is still a one-dimensional map sinc
the pacing relation~2! holds. However, the explicit depen
dence ofF on bothAn andDn leads to the fact that the mode
displays rate-dependent restitution. In particular, the dyna
andS1-S2 RCs are different~in Sec. III B of this paper we
will discuss different types of RCs!. The criterion for the
existence of alternans for the mapping model~4! was derived
by Tolkachevaet al. @20#. It predicts that alternans may exis
when

U12S 11
1

Sdyn
DS12U>1. ~5!

This criterion depends not only on the slope of the dynam
RC Sdyn but also on the slopes of the entire family ofS1-S2
RCsS12 obtained at differentS1 pacing intervals.

A focus of recent theoretical and experimental studies
to understand the mechanisms causing alternans and to
minate this response pattern using closed-loop feedb
methods developed by the nonlinear dynamics commun
Over the past few years, several studies have demonstr
©2004 The American Physical Society04-1
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that alternans can be suppressed with dynamic feedback
trol of the pacing interval@21–25#. Recently, Hallet al. @24#
demonstrated successful control of alternans in small pie
of in vitro paced bullfrog ventricles. Their experiments de
onstrated that alternans could be suppressed over a
range of control parameters and over the entire range of
ing rates for which alternans was observed. However, p
agreement between the experimental data and the theore
models was observed, fitting the bifurcation diagrams of
mathematical models to the experimental data did not p
duce good fits for the observed domains of control. Spec
cally, control of alternans was observed for feedback gain
large as four in the experiments, whereas the models
dicted that the gain must be less than;0.4 and limited to a
small region of pacing rates near the bifurcation to alterna

The control of alternans in the mapping models~1! and
~4! was considered in Ref.@26#. Basically, it was shown tha
~1! the domain of control does not depend on the spec
functional form of f and F but only on the value of its de
rivatives at the fixed point and~2! the domain of control for
the mapping model~4! is regulated byS12. Indeed, the
analysis made in Ref.@26# indicates that the mapping mod
~1! does not agree with the experiment and the mapp
model~4! may, in principle, describe the experimentally o
served domain of control ifS12 is truly less than one~as, for
instance, in bullfrogs!.

Several experimental and theoretical studies@14–17,27–
29# indicate that the memory effects have to be taken i
account in order to explain the more complex dynam
found in small cardiac cells. These effects were modeled
introducing a new variableMn in a two-dimensional map
ping model of the form

An115p~Dn ,Mn11!, ~6a!

Mn115g~An ,Dn ,Mn!. ~6b!

The model~6! can be equivalently expressed as

An115F~An ,Dn ,Dn21!. ~7!

Expressing the mapping model~6! in the form of Eq.~7!
shows that introducing the variableMn obscures the fact tha
the ‘‘memory’’ in these models just consists of an expli
dependence on the second-to-the-last DI, in addition to
dependence on the last DI and APD. This is in contrast to
~1!, where APD only depends on the preceding DI, and
~4!, where the APD depends on the preceding APD and
The dependence of the APD not only on the preceding DI
also on the previous APD and earlier DI indicates, in gene
the presence of short memory in the model. Accordingly,
mapping model~4! has one beat of memory and the mappi
model~7! has two beats of memory. Including one more b
of memory can change dramatically the dynamic proper
of the model@30#. In particular, the mapping model~7! can
exhibit ~under a certain parameter range! the so-called APD
accommodation effect@27,30#, where it takes up to severa
minutes for the APD to reach a steady-state value under
riodic pacing. The presence of memory along with elect
03190
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tonic effects can affect the appearance of alternans in
isolated cardiac cell@13,15,31#.

Note that the memory effects described by mapping m
els ~4! and ~7! are associated with a history of pacing ov
some period of time, as have been defined in the Ref.@28#.
Within this definition, the mapping models~4! and ~7! refer
to memory effects of the order of several seconds and u
several minutes, respectively.

In this paper we investigate the stability and control
alternans in the two-dimensional mapping model~7!. In Sec.
II, we derive the expression~7! and present a typical bifur
cation diagram for a particular form of the functionF. In
Sec. III, we derive a generic bifurcation criterion for th
existence of alternans in the two-dimensional mapp
model ~7!. We show that it can be written in terms of qua
tities that can be measured experimentally~slopes of differ-
ent types of RCs!. In Sec. IV, we investigate control of alter
nans in the two-dimensional mapping model~7! and
determine the region where control is successful.

II. TWO-DIMENSIONAL MAPPING MODEL

To derive the expression~7!, we use Eq.~6a! for the nth
stimulus

An5p~Dn21 ,Mn! ~8!

to solve forMn ,

Mn5 p̃~Dn21 ,An!. ~9!

Then we substitute Eq.~9! into Eq. ~6b! and that, in turn, is
substituted into Eq.~6a! to obtain

An115p@Dn ,g„An ,Dn ,p̃~Dn21 ,An!…#[F~An ,Dn ,Dn21!.
~10!

Since the variablesAn and Dn are dependent through th
pacing relation~2!, Eq. ~10! is simply a second-order differ
ence equation in the variableAn . By introducing a new vari-
able, Eq.~10! can be rewritten as a two-dimensional syste
of first-order difference equations.

The general form of the mapping model~6! includes the
model described by Chialvo, Michaels, and Jalife@28# as
well as the model described by Fox, Bodenschatz,
Gilmour @14#. Both models are of the particular form

An115~12aMn11!G~Dn!, ~11a!

Mn115@12~12Mn!e2An /t2#e2Dn /t2, ~11b!

where

G~Dn!5A1
E

11e2(Dn2C)/D
~12!

in the Foxet al. model @14#, and

G~Dn!5a12a2e2Dn /t1 ~13!
4-2
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in the Chialvo et al. model @28# ~a51!. Here
A,C,D,E,a1 ,a2 ,t1 ,t2 are tissue-dependent paramete
Note that the mapping model~11! can be easily rewritten in
the form ~7!.

Figure 1 is a schematic representation of the APD, DI, a
the memory variableM shown for the mapping model~11!.
The memory variableM accumulates during the duration o
the action potential and dissipates during the diastolic in
val. Figure 1 shows all the relevant variables for both wa
of expressing the two-dimensional mapping model: by E
~6! or by Eq.~7!, and the relationships among them.

For the remainder of this article, we discuss the system
interest~6! in the more manageable form of Eq.~7!. How-
ever, since Eqs.~6! are equivalent to Eq.~7!, all the results
presented herein are applicable to Eqs.~6!. To illustrate our
results, we use the Foxet al. mapping model given by Eqs
~11!, ~12! with a specific set of parameters that were cho
in Ref. @14# to produce good qualitative agreement with da
generated by an ionic model simulation. This ionic mod
was developed earlier@32# to describe experimental data re
resenting dynamics of the canine ventricular myocytes
typical bifurcation diagram for this particular mapping mod
is presented in Fig. 2. In order to obtain the diagram, the E
~11!, ~12! were iterated at each pacing intervalB until the
APD reached the steady-state valueA* . Note that the tissue
has a stable 1:1 response pattern~every stimulus elicits an
action potential of equal duration! for long pacing intervals
~slow pacing rate!. As the pacing interval decreases~faster
pacing!, the 1:1 response becomes unstable and a trans
to alternans~2:2 response! occurs. At faster pacing rates, th
1:1 response pattern becomes stable again. For the 1:1
2:2 responses considered herein, the pacing relation~2!
holds.

III. STABILITY OF THE TWO-DIMENSIONAL
MAPPING MODEL

In this section we analyze stability of the 1:1 respon
pattern in the two-dimensional mapping model~7! @equiva-
lently, Eqs.~6!# and derive a criterion for the existence
alternans~2:2 response pattern!. We introduce the differen
types of RCs and express the criterion in terms of exp

FIG. 1. Schematic representation of memory accumulation~dur-
ing the action potential duration! and dissipation~during the dias-
tolic interval! in the two-dimensional mapping model~7!.
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mentally measured quantities—the slopes of these RCs.

A. Stability region

To find a stability region for the two-dimensional ma
ping model, we linearize Eq.~7! in a neighborhood of the
fixed pointA* ,

An115A* 1D1Fu f .p.~An2A* !1D2Fu f .p.~Dn2D* !

1D3Fu f .p.~Dn212D* !, ~14!

where DiF is the derivative ofF with respect to itsi th
argument,f.p. denotes evaluation at the fixed pointA* , and
D* 5B2A* .

Using new parameters representing deviations from
fixed point

dn5An2A* , an5dn21 , ~15!

we can rewrite expression~14! in the form

S dn11

an11
D 5S m 2r

1 0 D S dn

an
D , ~16!

where

m[D1Fu f .p.2D2Fu f .p. , r[D3Fu f .p. . ~17!

The eigenvalues of the 232 matrix given in Eq.~16! are

l1,25
1

2
~m6Am224r!, ~18!

FIG. 2. Bifurcation diagram showing existence of alternans~2:2
response pattern! in the Foxet al. model @14#. The model param-
eters are:A588 msec,E5122 msec,C540 msec,D528 msec,
t25180 msec, anda50.2. Alternans occur within the range of pa
ing intervals from 150 msec to 200 msec. Note that in this range
1:1 response pattern is unstable, as is indicated by the dashed
The solid curves denote stable behavior.
4-3



e

pl

t
st

he

o

e

t

-
s

ex
a-
ne
ng
to
e

val
-

ame,

is

Dur-

. In
on-
at

RC,

-
as it

in

ig

a-

TOLKACHEVA et al. PHYSICAL REVIEW E 69, 031904 ~2004!
so the fixed pointA* is stable whenul1,2u,1. This occurs
whenm andr lie within the triangular region defined by th
lines

r51, r2m521, and r1m521. ~19!

Figure 3 displays the region of stability given in Eq.~19!.
The dashed curve corresponds to the expressionm224r
50 that represents the boundary between real and com
eigenvalues: the eigenvalues above~below! the dashed curve
are complex conjugates~real!. As seen in Fig. 3, differen
types of bifurcations may occur when the system loses
bility. Typically, when an eigenvaluel crosses$l51%, a
saddle-node bifurcation occurs@33#. When a complex-
conjugate pair of eigenvalues crosses the unit circle, t
generally a Hopf bifurcation occurs@33#. In this paper, we
are interested in a period-doubling bifurcation because it c
responds to the appearance of alternans@7,14#. Since this
bifurcation usually occurs when one of the eigenvalu
passes through21,

C~m,r![m1r521 ~20!

is the condition where stable 1:1 behavior may bifurcate
alternans in the two-dimensional mapping model~7!.

B. Bifurcation criterion: Connection with slopes of different
types of RCs

The condition for existence of alternans Eq.~20! contains
two quantitiesm andr, which, because of the greater com
plexity of the model, are difficult to connect with quantitie
having significant physical meaning. In this section, we
press criterion~20! in terms of quantities that can be me
sured experimentally. Experimentally, a RC can be obtai
by plotting APD as a function of the preceding DI accordi
to a particular pacing protocol. Using different pacing pro
cols it is possible to obtain different RCs and measure th

FIG. 3. Stability region~the region inside the triangle! for the
two-dimensional mapping model~7! given by Eq.~19!. The dashed
curve represents the boundary between the regions where the e
values are real~below the dashed line! and complex~above the
dashed line!. Arrows indicate the three possible types of bifurc
tions that occur when the system loses stability.
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slopes. Below, we determine the slopes of theS1-S2, dy-
namic and constant-BCL RCs~following Ref. @20# where the
main types of RCs were defined! based on the two-
dimensional mapping model~7! and express criterion~20! in
terms of these slopes.

1. S1-S2 RC

The S1-S2 RC ~also known as the standard RC! is ob-
tained by pacing the preparation at a given pacing inter
S1 until the steady state (A* ,D* ) is reached, and then add
ing a single premature stimulus after a particular DIDS1S2

~at

pacing intervalS2). The full S1-S2 RC is determined by
measuring the resulting APDAS1S2

for various DIsDS1S2
.

Note that for each S1 there is only oneS1-S2 RC. Accord-
ing to this protocol, the mapping model~7! can be rewritten
usingAn115AS1S2

in the following form:

AS1S2
5F~A* ,DS1S2

,D* ! ~21!

because all APDs and DIs except the last ones are the s
since steady state has been reached. The slope of theS1-S2
RC evaluated at the fixed pointA* can be found from the
expression~21! as

S125
dAS1S2

dDS1S2

U
S15S2

5D2Fu f .p. . ~22!

2. Dynamic RC

The dynamic~steady state! RC is obtained by pacing the
preparation at a fixed pacing interval until steady state
reached, at which time a single pair (A* ,D* ) is recorded.
The process is repeated for decreasing pacing intervals.
ing alternans, the last two (A* ,D* ) pairs are recorded so
that both the short and long action potentials are included
order to determine stability of the 1:1 response, let us c
sider the dynamic RC without alternans. In this case
steady state, expression~7! can be rewritten in the following
form:

A* 5F~A* ,D* ,D* !, ~23!

which can be used to determine the slope of the dynamic

Sdyn[
dA*

dD*
5D1Fu f .p.

dA*

dD*
1D2Fu f .p.1D3Fu f .p. .

~24!

Combining Eqs.~17!, ~22!, and~24!, we can determinem as

m512S122
S121r

Sdyn
. ~25!

3. Constant-BCL RC

The constant-BCL RC@17,20# describes the transient re
sponse of the paced cardiac tissue for a constant BCL,
approaches the steady-state value following a change

en-
4-4
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FIG. 4. Illustrations of the bifurcation crite
rion corresponding to the bifurcation diagram
Fig. 2 in terms of~a! values ofm andr and ~b!
slopes of different RCsSdyn ,S12,Sbcl . The solid
horizontal line is equal to21. The region be-
tween the solid vertical lines is the region whe
alternans exist according to the bifurcation di
gram ~Fig. 2!. Note thatC 521 at the onset of
alternans.
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BCL. A pacing protocol that allows the measurement of
slopesS12, Sdyn , andSbcl @34# of all RCs at each fixed poin
is described in Ref.@20#.

As was shown in Ref.@20#, the slope of the constant-BC
RC Sbcl is equal to the full derivative~with negative sign! of
the expression~7! calculated at the fixed point:

Sbcl[2
dF

dAn
52S D1F1D2F

dDn

dAn
1D3F

dDn21

dAn
D U

f .p

.

~26!

Realizing thatdDn /dAn521, anddAn /dDn21.S12, and
taking into account Eq.~17!, we can rewrite Eq.~26! as

Sbcl52m2
r

S12
. ~27!

Finally, the following expression forr is derived from Eqs.
~25! and ~27!:

r5
S12Sdyn

Sdyn2S12
S S12

Sdyn
211S122SbclD , ~28!

and thus thebifurcation criterion ~20! containing the slopes
of the different types of RC is

C~Sdyn ,S12,Sbcl![S 12S122
S12

Sdyn
D1

S12~12Sdyn!

Sdyn2S12

3F S 12S122
S12

Sdyn
D1SbclG521.

~29!

Criterion ~20! determines the bifurcation of the 1:1 respon
pattern of the two-variable mapping model~7! in terms ofm
andr. Criterion ~29! contains the same information in term
of the experimentally measured quantitiesSdyn , S12, and
Sbcl . Equations~25! and ~28! give the relationship betwee
all these variables. For emphasis, we are using the same
bol C to refer to both the functionC(m,r), when the bifur-
cation criterion~20! is expressed in terms of derivatives
03190
e

m-

F, and to the functionC(Sdyn ,S12,Sbcl), when that same
criterion is expressed in terms of slopes of the RCs as in
~29!.

In Fig. 4, the stability criterion expressed by Eqs.~20! and
~29! together with the values ofm,r,Sdyn , S12, andSbcl are
presented for different values of the pacing intervals cor
sponding to the bifurcation diagram in Fig. 2. Compari
Figs. 2 and 4 show that the transition to alternans does
deed occur as predicted by Eqs.~20! and ~29!. For this par-
ticular set of parameters,Sdyn , S12, andSbcl are close~but
not equal! to unity at both the onset and the offset of alter
ans. However,m andr are far from unity at these points.

IV. CONTROL OF ALTERNANS IN THE TWO-
DIMENSIONAL MAPPING MODEL

The key idea underlying the control of alternans is
design perturbations that stabilize the system about an
stable equilibrium state. In our analysis, the unstable equ
rium state is the 1:1 pattern for which the APD is the sa
for each stimulus and equal toA* . The experimental results
of Ref. @21# show that measuring the APD, then makin
small, real-time adjustments to the pacing interval—once
cycle—can stabilize the unstable equilibrium state in sm
pieces of in vitro paced bullfrog cardiac muscle. In tho
experiments, for each pacing interval, the response of
tissue to the first 5–10 stimuli was discarded in order
eliminate transients and only the steady-state values of
APD were recorded. The duration of each action poten
was determined at 70% of full repolarization. Following Re
@21#, we adjust the pacing intervalB by the small amount

«n52g~An212An22!, ~30!

whereg is the feedback gain. Applying this control to th
mapping model~7! yields the controlled system

An115F~An ,Dn ,Dn21 ,«n ,«n21!,

«n1152g~An2An21!. ~31!
4-5
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By linearizing Eq. ~31! about the fixed point~when An
5A* and «n50), using Eq.~15! and introducing the new
parameters

en5«n /g, un5«n21 /g, ~32!

we obtain

S dn11

en11

un11

an11

D 5S m gS12 gr 2r

21 0 0 1

0 1 0 0

1 0 0 0

D S dn

en

un

an

D ~33!

because by definition

]F

]«n21
U f .p.5r,

]F

]«n
U

f .p.

5S12. ~34!

Equation ~33! indicates that the domain of control for th
two-dimensional mapping model~7! does not depend on th
specific functional form ofF, but only on the value of its
derivatives evaluated at the fixed point and the feedback
g. Since the stability of the fixed point depends nontrivia
on four parameters (m, r, S12, g), the domain of control is
four dimensional and cannot be easily visualized. In co
parison, the domains of control for the one-dimensional m
ping models~1! and ~4! also do not depend on the specifi
functional form off andF, but they are characterized by on
two parameters~m,g! and (m,gS12), respectively. See Ref
@26# to view these two-dimensional graphs.

To determine the possible boundaries of the volume
(m,r,S12,g) space where the fixed point of the controlle
system is stable we use the characteristic equation of
system in Eq.~33!,

l42l3m1l2~r1gS12!1lg~r2S12!2gr50, ~35!

wherel denotes an eigenvalue of Eq.~33!. Possible bound-
aries of the domain of control are the surfaces where
modulus of at least one of the eigenvalues equals one
other words, the stability of a fixed point may only change
an eigenvaluel crosses the unit circle. If the eigenvalue
real then it could pass throughl51 or l521; if the eigen-
value is complex, then it and its complex conjugate co
move throughl5e6 iu for someuP@0,2p#. Each of these
conditions yields a codimension-one surface. LetS1 be all
the (m,r,S12,g) values that yield an eigenvaluel51; S2
corresponds to those parameter values wherel521; andS3
is the set of all values wherel5e6 iu. We find each of these
surfaces by substituting the corresponding value ofl into
Eq. ~35!. For l561, this is a straightforward calculation
For l5e6 iu, we find the surfaceS3 by first noting that the
left-hand side of Eq.~35! factors into

~z2eiu!~z2e2 iu!~z21c2z1c3!

5~z21c1z11!~z21c2z1c3!, ~36!

whereciPR for i 51,2,3. Expanding this product yields
03190
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z41~c11c2!z31~11c1c21c3!z21~c21c1c3!z1c3 .
~37!

We equate the coefficients of Eqs.~35! and ~37! to find the
condition for Eq.~35! to have at least two complex conjuga
roots of modulus one.

The surfaces are

S15$~m,r,S12,g!um212r50%, ~38!

S25$~m,r,S12,g!um111r22g~r2S12!50%, ~39!

S35$~m,r,S12,g!ur1gS121gr2mV211V250%,
~40!

where

V5
g~r2S12!1m

11gr
. ~41!

Only a subset of the surfacesS1 , S2, and S3 serve as
boundaries for the domain of control. The reason is that
stability of the fixed point need not change as an eigenva
crossesS i . For example, an eigenvalue crossing the u
circle does not change the stability of the fixed point if the
is already another eigenvalue with modulus greater than o
In this case, the fixed point will remain unstable.

To determine the regions bounded byS i , i 51,2,3, where
all the eigenvalues have modulus less than one, we num
cally compute the maximum eigenvalue of Eq.~33! at each
point in the space. This allows us to differentiate betwe
regions where the fixed point of the controlled system
stable, and those where it is unstable~i.e., there exists an
eigenvalue with modulus greater than one!.

As seen in Eq.~19! the stability of the uncontrolled sys
tem depends only onm and r. When we add control, the
additional parametersS12 and g are introduced. Thus, the
domain of control is four-dimensional. To present the dom
we first fix the parameterS12 ~at the values 0.2, 1, and 1.5!
because it is the only tissue-dependent parameter that
not explicitly play a role in the stability of the uncontrolle
system. In choosing the particular values ofS12, we took
into account the following: for typical parameter values,
listed in Fig. 2,S12.1 at the onset of alternans~see Fig. 4!.
Furthermore, some experiments show thatS12 could be very
small @30,35# or greater than one@8# in actual tissue.

Fixing S12, we compute the eigenvalues and calculate
possible boundariesS i ,i 51,2,3, for m values in the range
@23,3#, with a step size of 0.05. For each value ofm, we find
the region where all the eigenvalues have modulus less
one and record the maximum range ofr andg corresponding
to that region. The range ofr for which control is possible
@i.e., there exists someg for which all the eigenvalues of Eq
~35! are less than one# is displayed in subplots~a!, ~c!, and
~e! of Fig. 5 as regions enclosed by the solid lines. Similar
the range ofg for which control is successful is presented
subplots~b!, ~d!, and~f! of Fig. 5. For a given set of param
eters (m,r,S12), the left column in Fig. 5 shows the rang
where control is possible. The corresponding subplot on
right gives a possible range ofg which can be applied in
4-6
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CONDITION FOR ALTERNANS AND ITS CONTROL IN . . . PHYSICAL REVIEW E69, 031904 ~2004!
order to establish the control. For example, form520.5,
r521, andS1251 @this point is shown as an asterisk in Fi
5~c!#, control can be achieved for some values
gP~21.5,0.5! @denoted by an arrow in Fig. 5~d!#.

Figure 5 shows that the domains of control are qual
tively similar for different values ofS12. However, the mini-
mum and the maximum values ofg differ significantly: for
instance,gP~21.2,0.7! for S1251.5, whereasgP~27,6! for
S1250.2. The range ofg is larger~smaller! for the smaller
~larger! values ofS12. This suggests that perhaps it is th
productgS12, rather than the individual values ofg andS12,
that is the relevant quantity. Note that the domain of con
for the mapping model~4! depends on this same quanti

FIG. 5. Domains of control~regions enclosed by the solid lines!
for S1250.2, 1, and 1.5. Subplots~a!, ~c!, and~e! show the values
of ~m,r! where control is possible, i.e., there exists some value og
which stabilizes the fixed point. Outside of these regions, the fi
point cannot be stabilized for any value ofg. The shaded triangula
region of stability for the uncontrolled map is included for compa
son. Subplots~b!, ~d!, and~f! show for which values ofg the fixed
point can be stabilized.
03190
f

-

l

gS12 @26#. Recall thatS12 is the slope of theS1-S2 RC
evaluated at each point of the dynamic RC, i.e., for differ
values of S1. From the physical point of view,S12 quantifies
the response of the tissue~in equilibrium! to a sudden per-
turbation, which the controller attempts to cancel.

For the purpose of illustration, we calculated the dom
of control using the once-per-cycle control scheme for
particular case of the Foxet al.mapping model@14# given by
Eqs.~11!, ~12! with the parameters listed in Fig. 2. First, w
determine the values ofm, S12 and r for each value of the
pacing intervalB , as shown in Fig. 4. Then, using Eqs.~39!
and ~40!, for eachB we can find the value of the feedbac
gain g for which control is possible. Our results are pr
sented in Fig. 6 where the controlled and uncontrolled
gions are shown. The shaded region between the two ver
lines indicates the range where alternans exists in the
sence of control. Figure 6 demonstrates that the value of
gaing necessary to establish control is relatively small~0,g
,0.4! at the onset and the offset of alternans.

Comparing our predictions to experiments is not possi
at this time because no experiments have measured
slopes of the different RCs evaluated at the fixed point
pacing protocol for determining the slopes of different R
at the fixed point is proposed in Ref.@20# and implemented
experimentally in Ref.@30#. Results presented in Ref.@30#
for bullfrog cardiac muscle indicate, in particular, thatS12
can be very small~as small as 0.05! and, thus, according to
Fig. 5~b!, the gain necessary to establish control could
quite large.

V. CONCLUSION

To predict the onset of alternans in an isolated card
cell, a two-dimensional map of the form~6! is expressed as
Eq. ~7! and the relevant derivatives are calculate

d

FIG. 6. Domain of control of alternans for the Foxet al. model
@14# for specific values of parameters from Fig. 2. The shaded
gion between the two vertical lines indicates the range where a
nans exists in the absence of control.
4-7
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TOLKACHEVA et al. PHYSICAL REVIEW E 69, 031904 ~2004!
The bifurcation to alternans occurs according to the criter
~20!. Alternatively, this criterion is expressed in Eq.~29! in
terms of experimentally measured quantities—the slope
different restitution curvesSdyn ,S12, andSbcl . Furthermore,
the two-dimensional mapping model~7! is analyzed in the
presence of closed-loop feedback control in order to supp
alternans. We find that the parameter region where altern
can be suppressed and the cardiac cell’s 1:1 response pa
can be stabilized is a four-dimensional volume in the para
eter space (m,r,S12,g). We show that the domain of contro
does not depend on the specific functional form of the m
and, in the general case, is characterized by a combinatio
the slopes of different types of RCs. We present projecti
of the domain of control for different values ofS12 ~that
could be observed experimentally!. We calculate the gaing
for which control is successful and conjecture that the
evant quantity for stabilizing the 1:1 response pattern in c
diac tissue is the productgS12 rather than the individua
values ofg andS12.
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The analysis we present can be generalized to maps o
form An115F(An ,Dn ,An21 ,Dn21 , . . . ,An2m ,Dn2m),
wherem,n. This might correspond to a cardiac cell that h
higher-dimension memory. The difficulty, however, is th
the domain of control of the resulting higher-dimension
system will be tractable only with the help of numeric
methods.
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