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We investigate a two-dimensional mapping model of a paced, isolated cardiac cell that relates the duration
of the action potential to the two preceding diastolic intervals as well as the preceding action potential duration.
The model displays rate-dependent restitution and hence memory. We derive a criterion for the stability of the
1:1 response pattern displayed by the model. This criterion can be written in terms of experimentally measured
guantities—the slopes of restitution curves obtained via different pacing protocols. In addition, we analyze the
two-dimensional mapping model in the presence of closed-loop feedback control. The control is initiated by
making small adjustments to the pacing interval in order to suppress alternans and stabilize the 1:1 pattern. We
find that the domain of control does not depend on the functional form of the map, and, in the general case, is
characterized by a combination of the slopes. We show that theyga@étessary to establish control may vary
significantly depending on the value of the slope of the so-called standard restitutionleareie denoted as
S;»), but that the producyS,, stays approximately in the same range.

DOI: 10.1103/PhysReVvE.69.031904 PACS nuni)er87.19.Hh, 87.10+e, 05.45-a

[. INTRODUCTION show that the RC depends on the method by which it is
measured. Moreover, recent studi@s—15 have shown that
Several experimental and modeling studies have sughe slope of the RC at the onset of alternans can be signifi-
gested that an abnormal cardiac rhythm known as alternargantly larger than unity and thus the criteri¢8) fails to
of the action potential duratio@APD) is a first stage in the predict the onset of alternans in some cases.
development of ventricular arrhythmig$—5|, which often Based on empirical data, Gilmour and Collaborators
lead to sudden cardiac death. APD alternans is characteriz¢#l6,17] proposed a different type of mapping model to de-
by short-long alternations of the duration of subsequent acscribe their experimentélater, a model of this form was
tion potentials and often can be induced by pacing cardiaderived analytically[18] from a three-ionic-current mem-
tissue at a rapid rate. brane mode[19]). They assumed that the APD depends not
A well-known mechanism for producing alternans is steeponly on the preceding DI, but also on the preceding APD, so
APD restitution, as was first shown theoretically by Nolascothat
and Dahler{6]. Guevaraet al.[7] formularized this concept
by modeling the response of cardiac tissue to pacing using
the one-dimensional map

Ani1=F(A,.Dy). (4)

The mapping model) is still a one-dimensional map since
A,..=f(D,) 1) the pacing relatior(2) holds. However, the explicit depen-
n+i n dence ofF on bothA,, andD,, leads to the fact that the model

Here,f is the restitution curvéRC), A, ., is the APD gen- displays rate-dependent restitution. In particular, the dynamic
erated by the{+1)th stimulus and, is thenth diastolic ~andS1-S2 RCs are differentin Sec. Il B of this paper we
interval (DI), i.e., the interval during which the tissue recov- Will discuss different types of RQsThe criterion for the
ers to its resting state after the end of the previongh) existence of alternans for the mapping mo@glwas derived

action potential. Under pacing at a fixed cycle length, thedy Tolkacheveet al.[20]. It predicts that alternans may exist
APD and DI are related through the pacing relation when

A,+D,=B, 2 1- =1. 5

1+ ! )S
den 12
whereB is the pacing interval. It was shown in R§T] that L )
alternans originates via a period-doubling bifurcation and apJ S criterion depends not only on the slope of the dynamic

pears whenever the modulus of the slope of the RC is great&< Sdyn but also on the slopes of the entire familySif-S2
than one, RCsS;, obtained at differen§1 pacing intervals.

A focus of recent theoretical and experimental studies is
|f'|=1. (3)  to understand the mechanisms causing alternans and to ter-

minate this response pattern using closed-loop feedback

The model(1) describing APD as a function of only the methods developed by the nonlinear dynamics community.
preceding DI contradicts many experimef8-10] which  Over the past few years, several studies have demonstrated

1063-651X/2004/688)/0319048)/$22.50 69 031904-1 ©2004 The American Physical Society



TOLKACHEVA et al. PHYSICAL REVIEW E 69, 031904 (2004

that alternans can be suppressed with dynamic feedback cotonic effects can affect the appearance of alternans in the

trol of the pacing interval21—-25. Recently, Hallet al. [24] isolated cardiac ce[l13,15,31].

demonstrated successful control of alternans in small pieces Note that the memory effects described by mapping mod-

of in vitro paced bullfrog ventricles. Their experiments dem-els (4) and (7) are associated with a history of pacing over

onstrated that alternans could be suppressed over a wid®me period of time, as have been defined in the R&.

range of control parameters and over the entire range of pa®Vithin this definition, the mapping mode{g) and (7) refer

ing rates for which alternans was observed. However, pooto memory effects of the order of several seconds and up to

agreement between the experimental data and the theoreticdveral minutes, respectively.

models was observed, fitting the bifurcation diagrams of the In this paper we investigate the stability and control of

mathematical models to the experimental data did not proalternans in the two-dimensional mapping mo@®! In Sec.

duce good fits for the observed domains of control. Specifill, we derive the expressiof¥) and present a typical bifur-

cally, control of alternans was observed for feedback gains asation diagram for a particular form of the functidn. In

large as four in the experiments, whereas the models preSec. lll, we derive a generic bifurcation criterion for the

dicted that the gain must be less thai®.4 and limited to a existence of alternans in the two-dimensional mapping

small region of pacing rates near the bifurcation to alternansnodel (7). We show that it can be written in terms of quan-
The control of alternans in the mapping modéls and tities that can be measured experimentédippes of differ-

(4) was considered in Ref26]. Basically, it was shown that ent types of RCs In Sec. IV, we investigate control of alter-

(1) the domain of control does not depend on the specifimans in the two-dimensional mapping mod€él) and

functional form off andF but only on the value of its de- determine the region where control is successful.

rivatives at the fixed point an(®) the domain of control for

the mapping model4) is regulated byS,,. Indeed, the Il. TWO-DIMENSIONAL MAPPING MODEL

analysis made in Ref26] indicates that the mapping model

(1) does not agree with the experiment and the mapping To derive the expressiofY), we use Eq(6d) for the nth

model(4) may, in principle, describe the experimentally ob- stimulus

served domain of control i%;, is truly less than onéas, for

instance, in bullfrogs An=p(Dp-1,Mp) €3)
Several experimental and theoretical studib$—17,27—

29] indicate that the memory effects have to be taken intd© solve forM,,

account in order to explain the more complex dynamics

found in small cardiac cells. These effects were modeled by Mn=p(Dn_1.An). 9
introducing a new variabl®1, in a two-dimensional map-
ping model of the form Then we substitute Eq9) into Eq.(6b) and that, in turn, is
substituted into Eq(6a) to obtain
An+1=P(Dy,My11), (6a) -~
An11=p[Dy,9(A,,D,p(Dp-1,A)) =P (A,,D,,D 1)
Mn+1=9(An,Dp,Mp). (6b) (10

Since the variabled\, and D, are dependent through the
pacing relation(2), Eq. (10) is simply a second-order differ-
_ ence equation in the variabfg, . By introducing a new vari-
An+1=P(An,Dn D). ™ able, Eq.(10) can be rewritten as a two-dimensional system
of first-order difference equations.
The general form of the mapping modé@) includes the

The model(6) can be equivalently expressed as

Expressing the mapping modé) in the form of Eq.(7)
shows that introducing the variablé,, obscures the fact that model described by Chialvo, Michaels, and Jafigg] as

the “memory” in these models just con5|st§ of ar.1_epr|C|'t well as the model described by Fox, Bodenschatz, and
dependence on the second-to-the-last DI, in addition to |t%. .
ilmour [14]. Both models are of the particular form

dependence on the last DI and APD. This is in contrast to EqQ-
(1), where APD only depends on the preceding DI, and Eq.
(4), where the APD depends on the preceding APD and DI.
The dependence of the APD not only on the preceding DI but
also on the previous APD and earlier DI indicates, in general,
the presence of short memory in the model. Accordingly, th?Nhere
mapping mode(4) has one beat of memory and the mapping

model(7) has two beats of memory. Including one more beat

An+1=(1—aMp;1)G(Dy), (118

Mpp1=[1—(1-M,e An/72]e Pl (11h

of memory can change Qramatically the_dynamic properties G(D,)=A+ (12)
of the model[30]. In particular, the mapping modéf) can 1+e (Pn=C/D

exhibit (under a certain parameter rangke so-called APD

accommodation effed27,30, where it takes up to several in the Foxet al. model[14], and

minutes for the APD to reach a steady-state value under pe-

riodic pacing. The presence of memory along with electro- G(D,)=a;—a,e Pn/n (13
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FIG. 1. Schematic representation of memory accumulation-
ing the action potential duratiprand dissipation(during the dias- 50
tolic interval in the two-dimensional mapping modé). 50 100 150 200 250 300 350 400

. ) B (msec)
in the Chialvo etal. model [28] (a=1). Here

A,C,D,E,a;,a,,7,, 7 are tissue-dependent parameters. FIG. 2. Bifurcation diagram showing existence of alternéhg
Note that the mapping modé€ll) can be easily rewritten in  response patteyrin the Foxet al. model[14]. The model param-

the form (7). eters areA=88 msec,E=122 msec,C=40 msec,D =28 msec,
Figure 1 is a schematic representation of the APD, DI, and,= 180 msec, and=0.2. Alternans occur within the range of pac-
the memory variablél shown for the mapping modéll). ing intervals from 150 msec to 200 msec. Note that in this range the

The memory variablé/ accumulates during the duration of 1:1 response pattern is unstable, as is indicated by the dashed line.
the action potential and dissipates during the diastolic interThe solid curves denote stable behavior.
val. Figure 1 shows all the relevant variables for both ways
of expressing the two-dimensional mapping model: by Eqsmentally measured quantities—the slopes of these RCs.
(6) or by Eq.(7), and the relationships among them.

For the remainder of this article, we discuss the system of A. Stability region
interest(6) in the more manageable form of E(). How-
ever, since Eqs6) are equivalent to Eq.7), all the results ) X _ . .
presented herein are applicable to E@. To illustrate our  P'N9 mo_del,*we linearize Edy7) in a neighborhood of the
results, we use the Faat al. mapping model given by Eqs. [1X€d POINtA®,
(12), (12) with a specific set of parameters that were chosen A
in Ref.[14] to produce good qualitative agreement with data
generated by an ionic model simulation. This ionic model +D3®[s, (Dp_1—D*), (149
was developed earli¢B2] to describe experimental data rep-
resenting dynamics of the canine ventricular myocytes. Ayhere D;® is the derivative ofd® with respect to itsith
typical bifurcation diagram for this particular mapping model argumentf.p. denotes evaluation at the fixed poikt, and
is presented in Fig. 2. In order to obtain the diagram, the Eq* =B— A*.
(11, (12 were iterated at each pacing intenBluntil the Using new parameters representing deviations from the
APD reached the steady-state valdie. Note that the tissue fixed point
has a stable 1:1 response pattéemery stimulus elicits an
action potential of equal duratidrior long pacing intervals S, =A,—A* a =8, 1, (15)
(slow pacing rate As the pacing interval decreaséaster
pacing, the 1:1 response becomes unstable and a transitiq)e can rewrite expressiofid) in the form
to alternang2:2 responseoccurs. At faster pacing rates, the

To find a stability region for the two-dimensional map-

nt1=A"+ qu)|f.p.(An_A*)+ D2q)|f.p.(Dn_ D*)

1:1 response pattern becomes stable again. For the 1:1 and S w —p\[b
2:2 responses considered herein, the pacing relat®n ( Nt )( ”), (16)
holds. i1 1 0/\a,

where
IIl. STABILITY OF THE TWO-DIMENSIONAL

MAPPING MODEL u=D1®[¢, =D Pl¢p, p=D3Pls, . (17)
In this section we analyze stability of the 1:1 response he ei | ¢ th . :

pattern in the two-dimensional mapping modél [equiva- The eigenvalues of thex2 matrix given in Eq/(16) are

lently, Eqgs.(6)] and derive a criterion for the existence of

alternans(2:2 response pattexrnWe introduce the different 1
s2:2 response pafter haa= 5 (w7 0),

types of RCs and express the criterion in terms of experi- (18)
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1.5 slopes. Below, we determine the slopes of 8ieS2, dy-
namic and constant-BCL RGfllowing Ref.[20] where the
main types of RCs were definecdbased on the two-
dimensional mapping modér) and express criterio(20) in

Hopf
A
0.54 5 N / terms of these slopes.
Q o, X
0.0- ’0% '// 7 ,Qob@ 1. S1-S2 RC
o% / §’ The S1-S2 RC (also known as the standard R ob-
-0.54 %’o // & tained by pacing the preparation at a given pacing interval

1.0+

S1 until the steady stateA* ,D*) is reached, and then add-
-1.04 ing a single premature stimulus after a particulau[IgIlS2 (at
pacing intervalS2). The full S1-S2 RC is determined by
1.5+ ' ; ' measuring the resulting APB\s s, for various DIsDs s .

m Note that for each S1 there is only o8&-S2 RC. Accord-
ing to this protocol, the mapping mod@l) can be rewritten
FIG. 3. Stability region(the region inside the triangldor the usingAn+1=A3132 in the following form:
two-dimensional mapping modé€r) given by Eq.(19). The dashed
curve represents the boundary between the regions where the eigen- Ag g =D (A*,Dg Sz'D*) (21)
values are realbelow the dashed lineand complex(above the 172 !

o_Iashed ling Arrows indicate the three possi_k_)le types of bifurca- because all APDs and DIs except the last ones are the same,
tions that occur when the system loses stability. since steady state has been reached. The slope SH#&2

RC evaluated at the fixed poidt* can be found from the
expression21) as

so the fixed pointA* is stable wherj\; J/<1. This occurs

whenu andp lie within the triangular region defined by the

lines dAg s,
1

p=1, p—u=-1, and p+tu=-—1. (29 812_dDS
172 ls1=52

=D, Pl . (22

Figure 3 displays the region of stability given in Ed.9).

The dashed curve corresponds to the expresgién 4p 2. Dynamic RC

=0 that represents the boundary between real and complex The dynamic(steady stateRC is obtained by pacing the
eigenvalues: the eigenvalues abdlelow) the dashed curve preparation at a fixed pacing interval until steady state is
are complex conjugateea). As seen in Fig. 3, different reached, at which time a single paid,D*) is recorded.
types of bifurcations may occur when the system loses stafhe process is repeated for decreasing pacing intervals. Dur-
bility. Typically, when an eigenvalue. crosses{\=1}, a ing alternans, the last twoA¢,D*) pairs are recorded so
saddle-node bifurcation occurg33]. When a complex-  that both the short and long action potentials are included. In
conjugate pair of eigenvalues crosses the unit circle, thegrder to determine stability of the 1:1 response, let us con-
generally a Hopf bifurcation occuf83]. In this paper, we sider the dynamic RC without alternans. In this case at

are interested in a period-doubling bifurcation be_cause _it COlsteady state, expressi¢f) can be rewritten in the following
responds to the appearance of alternfihd4]. Since this  form:

bifurcation usually occurs when one of the eigenvalues
passes through-1, A*=®(A*,D*,D*), (23

Clu,p)=p+p=-1 (200 which can be used to determine the slope of the dynamic RC,

is the condition where stable 1:1 behavior may bifurcate to

* *
alternans in the two-dimensional mapping mog#l dA dA

E:D1<D|f'p'ﬁ+D2(D|f'p'+D3(D|f.p. .

B. Bifurcation criterion: Connection with slopes of different (24)
types of RCs

denE

o i ] Combining Eqgs(17), (22), and(24), we can determing. as
The condition for existence of alternans Eg0) contains

two quantitiesu and p, which, because of the greater com- Si,tp
plexity of the model, are difficult to connect with quantities n=1=S1— S,
having significant physical meaning. In this section, we ex- dyn
press criterion(20) in terms of quantities that can be mea-
sured experimentally. Experimentally, a RC can be obtained 3. Constant-BCL RC

by plotting APD as a function of the preceding DI according The constant-BCL R17,20 describes the transient re-

to a particular pacing protocol. Using different pacing proto-sponse of the paced cardiac tissue for a constant BCL, as it
cols it is possible to obtain different RCs and measure theiapproaches the steady-state value following a change in

(25
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----S,
a) b) ----- den
0.4 1.24 S s,
024" T SaeS125:0)
b 0.81 7 N FIG. 4. lllustrations of the bifurcation crite-
g 0.0 L7/ N\ rion corresponding to the bifurcation diagram in
> o.2] 0.4 / '\\\ Fig. 2 in terms of(a) values ofu andp and (b)
= -0.2{ . ;
- N / '\x\\_‘_ slopes of different RC8gy,S;2,Syc- The solid
> -0.44 0.0 - horizontal line is equal to-1. The region be-
= 06 tween the solid vertical lines is the region where
g Rl -0.44 alternans exist according to the bifurcation dia-
0.8 gram (Fig. 2). Note thatC =—1 at the onset of
-0.84 alternans.
-1.0 10

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
B (msec) B (msec)

BCL. A pacing protocol that allows the measurement o_f thed, and to the functionC(Sgyyn,S12,Sper), When that same
slopesSy,, Syyn, andS, [34] of all RCs at each fixed point  criterion is expressed in terms of slopes of the RCs as in Eq.
is described in Ref.20]. (29).
As was shown in Re{20], the slope of the constant-BCL | Fig. 4, the stability criterion expressed by E(0) and
RC S, is equal to the full der|vat|vé_W|th negative sighof (29) together with the values gf,p,Sqyn, S12, andSy are
the expressiort7) calculated at the fixed point: presented for different values of the pacing intervals corre-
sponding to the bifurcation diagram in Fig. 2. Comparing
- _ Ez _ dbn dDy-1 Figs. 2 and 4 show that the transition to alternans does in-
Soc= D®+D,d +D3® . A
dA, dA, dAq /1, deed occur as predicted by E480) and (29). For this par-
(26) ticular set of pe}rameter§dyn, Si», andS, are close(but
o not equal to unity at both the onset and the offset of altern-
Realizing thatdD,/dA,= -1, anddA,/dD,_1=S;5, and  ans. Howeveru andp are far from unity at these points.
taking into account Eq(17), we can rewrite Eq(26) as

p IV. CONTROL OF ALTERNANS IN THE TWO-
Spcl=—pm— 5. (27) DIMENSIONAL MAPPING MODEL
12

) ) _ _ ) The key idea underlying the control of alternans is to
Finally, the following expression fop is derived from Eqs. design perturbations that stabilize the system about an un-

(25 and (27): stable equilibrium state. In our analysis, the unstable equilib-
rium state is the 1:1 pattern for which the APD is the same
_ S1254yn ( Si2 —1+S,-S, ) (28) for each stimulus and equal &*. The experimental results
p Suyn—S12 Suyn 12 bel o of Ref. [21] show that measuring the APD, then making

small, real-time adjustments to the pacing interval—once per

and thus thebifurcation criterion (20) containing the slopes cycle—can stabilize the unstable equilibrium state in small
of the different types of RC is pieces of in vitro paced bullfrog cardiac muscle. In those
experiments, for each pacing interval, the response of the

ﬁ) S1A1— Suyn) tissue to the first 5-10 stimuli was discarded in order to
Sayn Sayn— S12 eliminate transients and only the steady-state values of the
APD were recorded. The duration of each action potential

ﬁ +5, }: 1 was determined at 70% of full repolarization. Following Ref.

cl ' [21], we adjust the pacing interv8 by the small amount

C(denislzvsbcl)z 1=

den
(29)

en=—Y(An-1—An-2), (30
Criterion (20) determines the bifurcation of the 1:1 response
pattern of the two-variable mapping mod@) in terms ofu  \where y is the feedback gain. Applying this control to the
andp. Criterion (29) contains the same information in terms mapping model7) yields the controlled system
of the experimentally measured quantiti8g,,, S;,, and
Spei- Equations(25) and (28) give the relationship between
all these variables. For emphasis, we are using the same sym-
bol C to refer to both the functio®(u,p), when the bifur-
cation criterion(20) is expressed in terms of derivatives of ens1=—Y(An—An_1)- (31

Ani1=P(A,,D,,Dyo1,8n0,80-1),

031904-5
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By linearizing Eq.(31) about the fixed pointwhen A,
=A* ande,=0), using Eq.(15) and introducing the new
parameters

en=enly, Oh=en-1lv, (32
we obtain
On+1 Ko YS12 vp P Sn
i1 -1 0 0 1 e,
= (33
Onin 0 1 0 0 0,
dnyq 1 0 0 0 an
because by definition
P aP s a4
Jeq_1 f.p.= P E =912 (34

Equation(33) indicates that the domain of control for the

PHYSICAL REVIEW E 69, 031904 (2004
Z*+(c1+Cy) 23+ (14 ¢1Cy+C3)Z2+ (Cp+C1C3)Z+ Cs.
(37)

We equate the coefficients of Eq85) and(37) to find the
condition for Eq.(35) to have at least two complex conjugate
roots of modulus one.

The surfaces are

21:{(M1p151217)|ﬂ_1_p:O};
35={(u,p,S12, V)|t 1+p—2y(p—S1») =0}, (39

S3={(1.p,S12,7)|p+ ySi2+ yp— uV— 1+V2=0},(4O)

(39)

where

_ Y(p—Si)+u

v 1+vp

(41)

Only a subset of the surfaces;, X,, andX; serve as

two-dimensional mapping mod€T) does not depend on the houndaries for the domain of control. The reason is that the
specific functional form ofP, but only on the value of its  stapility of the fixed point need not change as an eigenvalue
derivatives evaluated at the fixed pOint and the feedback gaierosseszi . For examp|e’ an eigenva'ue Crossing the unit
7. Since the stability of the fixed point depends nontrivially circle does not change the stability of the fixed point if there
on four parametersy(, p, Sy, y), the domain of control is s already another eigenvalue with modulus greater than one.
four dimensional and cannot be easily visualized. In comqn this case, the fixed point will remain unstable.

parison, the domains of control for the one-dimensional map- Tq determine the regions bounded by, i =1,2,3, where
ping models(1) and (4) also do not depend on the specific 3| the eigenvalues have modulus less than one, we numeri-
functional form off and F, but they are characterized by Only Ca”y Compute the maximum eigenvalue of EGB) at each

two parametersu,y) and (u,yS;), respectively. See Ref. point in the space. This allows us to differentiate between

[26] to view these two-dimensional graphs.

regions where the fixed point of the controlled system is

To determine the possible boundaries of the volume instaple, and those where it is unstalfie., there exists an
(k.p,S12,7) space where the fixed point of the controlled eigenvalue with modulus greater than pne
system is stable we use the characteristic equation of the As seen in Eq(19) the stability of the uncontrolled sys-

system in Eq(33),
M =N3u+N%(p+ ¥S) + N y¥(p—S1) — yp=0, (39

where\ denotes an eigenvalue of E@3). Possible bound-

aries of the domain of control are the surfaces where th
modulus of at least one of the eigenvalues equals one. |
other words, the stability of a fixed point may only change if;
an eigenvaluex crosses the unit circle. If the eigenvalue is

real then it could pass througt=1 or A=—1; if the eigen-

value is complex, then it and its complex conjugate could

move throughx =e='? for some 9<[0,277]. Each of these
conditions yields a codimension-one surface. Egtbe all
the (u,p,Si2,7) values that yield an eigenvalue=1; >,
corresponds to those parameter values where-1; and> ;

is the set of all values whete=e~'?. We find each of these
surfaces by substituting the corresponding valuex dhto
Eq. (35). For A==*1, this is a straightforward calculation.
Forx=e"'’, we find the surfac& 5 by first noting that the
left-hand side of Eq(35) factors into

(z—e'%(z—e %) (2% +coz+Cy)
=(Z%+c z+1)(Z%+cyz+Cy), (36)

wherec; e R for i =1,2,3. Expanding this product yields

tem depends only om and p. When we add control, the
additional parameter§,;, and y are introduced. Thus, the
domain of control is four-dimensional. To present the domain
we first fix the paramete®,, (at the values 0.2, 1, and 1.5
because it is the only tissue-dependent parameter that does

Aot explicitly play a role in the stability of the uncontrolled

stem. In choosing the particular values $, we took
into account the following: for typical parameter values, as
listed in Fig. 2,S;,=1 at the onset of alternarisee Fig. 4.
Furthermore, some experiments show t8atcould be very
small[30,35 or greater than ong8] in actual tissue.

Fixing S;», we compute the eigenvalues and calculate the
possible boundarie¥,;,i=1,2,3, for x values in the range
[—3,3], with a step size of 0.05. For each valuewgfwe find
the region where all the eigenvalues have modulus less than
one and record the maximum rangepadnd y corresponding
to that region. The range ¢f for which control is possible
[i.e., there exists somefor which all the eigenvalues of Eq.
(35) are less than ores displayed in subplotéa), (c), and
(e) of Fig. 5 as regions enclosed by the solid lines. Similarly,
the range ofy for which control is successful is presented in
subplots(b), (d), and(f) of Fig. 5. For a given set of param-
eters ,p,S;y), the left column in Fig. 5 shows the range
where control is possible. The corresponding subplot on the
right gives a possible range of which can be applied in
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-1.04 FIG. 6. Domain of control of alternans for the Fekal. model
1.5 uncontrolled [14] for specific values of parameters from Fig. 2. The shaded re-
20 gion between the two vertical lines indicates the range where alter-
) B Li 23 nans exists in the absence of control.
vS1» [26]. Recall thatS,, is the slope of theS1-S2 RC
(e) 254 evaluated at each point of the dynamic RC, i.e., for different
2.0 values of S1. From the physical point of vie®, quantifies
15] the response of the tissum equilibrium) to a sudden per-
1.01 turbation, which the controller attempts to cancel.
S =1.505] For the purpose of illustration, we calculated the domain
12 controlled i
0.0 of control using the once-per-cycle control scheme for the
-0.54 particular case of the Faat al. mapping mode]14] given by
-1.04 Egs.(11), (12) with the parameters listed in Fig. 2. First, we
-1.51 uncontrolled determine the values @i, S;, andp for each value of the
2605 LR I pacing intervaB , as shown in Fig. 4. Then, using Eq89)
U8 and (40), for eachB we can find the value of the feedback

gain vy for which control is possible. Our results are pre-

FIG. 5. Domains of controlregions enclosed by the solid lines sented in Fig. 6 where the controlled and uncontrolled re-
for S;,=0.2, 1, and 1.5. Subplot®), (c), and(e) show the values gions are shown. The shaded region between the two vertical
of (u,p) where control is possible, i.e., there exists some valug of lines indicates the range where alternans exists in the ab-
which stabilizes the fixed point. Outside of these regions, the fixegence of control. Figure 6 demonstrates that the value of the
point cannot be stabilized for any value pfThe shaded triangular  gain y necessary to establish control is relatively sni@ y
region of stability for the uncontrolled map is included for compari- <(.4) at the onset and the offset of alternans.
son. Subplotgb), (d), and(f) show for which values of the fixed Comparing our predictions to experiments is not possible
point can be stabilized. at this time because no experiments have measured the

slopes of the different RCs evaluated at the fixed point. A

order to establish the control. For example, for—0.5, pacing protocol for determining the slopes of different RCs
p=—1, andS,,= 1 [this point is shown as an asterisk in Fig. at the fixed point is proposed in R¢20] and implemented
5(c)], control can be achieved for some values oféXperimentally in Ref[30]. Results presented in R€f30]
ye(—1.5,0.5 [denoted by an arrow in Fig.(&)]. for bullfrog cardiac muscle indicate, in particular, t_hbitz

Figure 5 shows that the domains of control are qualitac@n be very smalfas small as 0.0%and, thus, according to
tively similar for different values 08,,. However, the mini- Fig- 5b), the gain necessary to establish control could be
mum and the maximum values of differ significantly: for ~ Quite large.
instance,ye(—1.2,0.7 for S;,=1.5, whereasye(—7,6) for
S;,=0.2. The range ofy is larger(smalley for the smaller
(largen values ofS,;,. This suggests that perhaps it is the
productyS,,, rather than the individual values gfandsS,,, To predict the onset of alternans in an isolated cardiac
that is the relevant quantity. Note that the domain of controkell, a two-dimensional map of the for(B) is expressed as
for the mapping mode(4) depends on this same quantity Eq. (7) and the relevant derivatives are calculated.

V. CONCLUSION

031904-7
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The bifurcation to alternans occurs according to the criterion The analysis we present can be generalized to maps of the
(20). Alternatively, this criterion is expressed in EQ9) in  form A, 1=P(A,,.D1,An-1.Dn-1, - - Arem:Dinem),
terms of experimentally measured quantities—the slopes afherem<n. This might correspond to a cardiac cell that has
different restitution curveS;y,,S;2, andSy. Furthermore,  higher-dimension memory. The difficulty, however, is that
the two-dimensional mapping mod€f) is analyzed in the the domain of control of the resulting higher-dimensional

presence of closed-loop feedback control in order to suppres§/stem will be tractable only with the help of numerical
alternans. We find that the parameter region where alternanfethods.

can be suppressed and the cardiac cell’'s 1:1 response pattern
can be stabilized is a four-dimensional volume in the param-
eter spaceg,p,S;,,y). We show that the domain of control
does not depend on the specific functional form of the map
and, in the general case, is characterized by a combination of
the slopes of different types of RCs. We present projections We gratefully acknowledge the support of the National
of the domain of control for different values @&, (that  Science Foundation under Grants Nos. PHY-9982860, PHY-
could be observed experimentallyVe calculate the gaiy ~ 0243584, National Institutes of Health under Grant No.
for which control is successful and conjecture that the rel-lR01-HL-72831(E.G.T. and D.J.G, and the National Sci-
evant quantity for stabilizing the 1:1 response pattern in carence Foundation under Grant No. DMS-9983320M.R.

diac tissue is the productS;, rather than the individual and M.G), as well as fruitful discussion with Professor
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